Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method.
نویسندگان
چکیده
To relate the subcellular molecular events to organ level physiology in heart, we have developed a three-dimensional finite-element-based simulation program incorporating the cellular mechanisms of excitation-contraction coupling and its propagation, and simulated the fluid-structure interaction involved in the contraction and relaxation of the human left ventricle. The FitzHugh-Nagumo model and four-state model representing the cross-bridge kinetics were adopted for cellular model. Both ventricular wall and blood in the cavity were modeled by finite element mesh. An arbitrary Lagrangian Eulerian finite element method with automatic mesh updating has been formulated for large domain changes, and a strong coupling strategy has been taken. Using electrical analog of pulmonary circulation and left atrium as a preload and the windkessel model as an afterload, dynamics of ventricular filling as well as ejection was simulated. We successfully reproduced the biphasic filling flow consisting of early rapid filling and atrial contraction similar to that reported in clinical observation. Furthermore, fluid-structure analysis enabled us to analyze the wave propagation velocity of filling flow. This simulator can be a powerful tool for establishing a link between molecular abnormality and the clinical disorder at the macroscopic level.
منابع مشابه
Parallel Adaptive Cartesian Upwind Methods for Shock-Driven Multiphysics Simulation
The multiphysics fluid-structure interaction simulation of shock-loaded thin-walled structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. By combining a Cartesian embedded boundary approach with dynamic mesh adaptation a generic software framework for such flow solvers has been constructed that allows easy exchange of the s...
متن کاملVolume-Filling Effects on Sloshing Frequency in Simplified and Explicit Dynamic Finite Element Models of Tank Wagons During Braking and Turning
Numerical analysis of fluid sloshing in tank wagons is amongst essential research ideas that are focused by railway engineers. The free surface of fluid becomes unstable and turns into a dynamic complex non-linear problem for fluid-structure interaction (FSI). In this paper, initially, the dynamic response of the tank, including lateral force analysis and pressure distribution during braking, i...
متن کاملمدلسازی اجزای محدود برش ماده فولادی با جت آب دارای ذرات برنده
Numerical modeling of machining processes is of significance in the parametric analysis and optimization of their performance. In this paper, a finite element-based model of abrasive waterjet (AWJ) cutting of a ductile material is presented with the help of an explicit, nonlinear finite element method. In this model, both solid-solid interaction and fluid-structure interaction are considered. T...
متن کاملA coupled mitral valve - left ventricle model with fluid-structure interaction
Understanding the interaction between the valves and walls of the heart is important in assessing and subsequently treating heart dysfunction. This study presents an integrated model of the mitral valve (MV) coupled to the left ventricle (LV), with the geometry derived from in vivo clinical magnetic resonance images. Numerical simulations using this coupled MV-LV model are developed using an im...
متن کاملCOMPUTER SIMULATION OF FLUID FLOW FILLING DURING MOLD USING FINITE VOLUME METHOD
In this investigation, ^5 2-D Finite Volume Method (FVM) with unstructured triangular mesh is developed to simulate the mould filling process. The simulation of fluid flow and track of free surface is based on the Marker And Cell (MAC) technique. This technique has capability ofhandling the arbitrary curved solid boundaries in the casting processes. In order to verify the computational results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 87 3 شماره
صفحات -
تاریخ انتشار 2004